Automatic Segmentation and Yield Measurement of Fruit using Shape Analysis
نویسندگان
چکیده
Efficient locating the fruit on the tree is one of the major requirements for the fruit harvesting system. In this paper, automatic segmentation and yield calculation of fruit based on shape analysis is presented. Color and shape analysis was utilized to segment the images of different fruits like apple, pomegranate, oranges, peach, litchi and plum obtained under different lighting conditions. First the input sectional tree image was converted from RGB colour space into the L*a*b colour space. The resultant image was then applied to the algorithm for fruit segmentation. The Edge detection and combination of a circular fitting algorithm was used for the automatic segmentation of fruit in the image. The resultant edge points were then used for fitting the approximate circular shape. The resultant fitted circles were used as a count of total number of fruits in an image. Hundred sectional tree images of different fruits were used for the segmentation and yield measurement. The results indicate that the proposed method can accurately segment the occluded fruits with the efficiency of 98% and the average yield measurement error was found as 31. 4 %.
منابع مشابه
Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملOn Plant Detection of Intact Tomato Fruits Using Image Analysis and Machine Learning Methods
Fully automated yield estimation of intact fruits prior to harvesting provides various benefits to farmers. Until now, several studies have been conducted to estimate fruit yield using image-processing technologies. However, most of these techniques require thresholds for features such as color, shape and size. In addition, their performance strongly depends on the thresholds used, although opt...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملAutomatic Sperm Analysis in Microscopic Images of Human Semen: Segmentation Using Minimization of Information Distance
Introduction The morphologic features of human sperms are key indicators for monitoring fertility problems in men. Therefore, automated analyzing methods via microscopic videos have become the most favorite policy in infertility treatment during the last decades. Materials and Methods In the proposed method, firstly a hypothesis testing framework was defined to distinguish sperms from backgroun...
متن کامل